Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
J Infect Dev Ctries ; 17(6): 881-885, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37406060

RESUMO

INTRODUCTION: Stenotrophomonas maltophilia is a Gram-negative, opportunistic pathogen associated with a high morbidity and mortality rate. We report our clinical experience in treating a patient with infected pancreatic necrosis caused by multidrug-resistant (MDR) S. maltophilia with a novel drug combination. CASE REPORT: A 65-year-old male with history of type II diabetes was admitted with acute pancreatitis, voluminous ascites, and signs of sepsis after undergoing an echo-endoscopy procedure with pancreas biopsy to investigate a Wirsung duct dilatation. Retroperitoneal fluid culture revealed S. maltophilia resistant to colistin and with intermediate susceptibility to trimethoprim-sulfamethoxazole and levofloxacin. The synergy between aztreonam (ATM) and ceftazidime/avibactam (CZA) was demonstrated using the combined disk pre-diffusion test. CONCLUSIONS: There are sparse data providing guidance on the optimal regimen against MDR S. maltophilia infections. Although in this case a surgical excision was essential, combination of ATM and CZA provided effective synergistic antimicrobial treatment with clinical cure of severe acute pancreatitis infected with S. maltophilia. The combined disk pre-diffusion test with ATM and CZA requires no special equipment and can be routinely performed in clinical microbiology labs. Combination of ATM with CZA should be considered for cases of MDR S. maltophilia infections with limited treatment options.


Assuntos
Diabetes Mellitus Tipo 2 , Infecções por Bactérias Gram-Negativas , Pancreatite , Stenotrophomonas maltophilia , Masculino , Humanos , Idoso , Aztreonam/farmacologia , Aztreonam/uso terapêutico , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Doença Aguda , Combinação de Medicamentos , Testes de Sensibilidade Microbiana , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia
2.
Curr Microbiol ; 80(1): 5, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434296

RESUMO

Lungs of cystic fibrosis patients are often colonized or infected with organisms, such as Pseudomonas aeruginosa and other emerging pathogenic bacteria such as Achromobacter xylosoxidans. Further, it is well established that infections of the cystic fibrosis lung airways are caused by polymicrobial infections, although its composition and diversity may change throughout the patient's life. In the present study, we investigated the effects of N-acetylcysteine (NAC) and amikacin, aztreonam, ciprofloxacin, and tobramycin alone and in combination against single- and dual-species biofilms of P. aeruginosa and A. xylosoxidans, in vitro and in the Caenorhabditis elegans infection model. Results showed that tobramycin and ciprofloxacin were the most effective antibiotics, while aztreonam was the least effective antibiotic against both single- and dual-species biofilms of P. aeruginosa and A. xylosoxidans. However, NAC showed little effect on both single- and dual-species, even with a combination of antibiotics. Increased survival was observed in C. elegans when treated with NAC in combination with tobramycin or ciprofloxacin, compared to no treatment or NAC alone. Tobramycin and ciprofloxacin were found effective in biofilms, but more research is needed to better understand the effects of NAC and antibiotics against single- and dual-species biofilms.


Assuntos
Achromobacter denitrificans , Fibrose Cística , Animais , Humanos , Pseudomonas aeruginosa , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Acetilcisteína/farmacologia , Aztreonam/farmacologia , Fibrose Cística/microbiologia , Caenorhabditis elegans , Biofilmes , Tobramicina/farmacologia , Ciprofloxacina/farmacologia
3.
Microbiol Spectr ; 10(6): e0360122, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36342288

RESUMO

As multidrug and pan-resistance among Enterobacterales continue to increase, there is an urgent need for more therapeutic options to treat these infections. New ß-lactam and ß-lactam inhibitor (BLI) combinations have a broad spectrum of activity, but those currently approved do not provide coverage against isolates harboring metallo-ß-lactamases (MBL). Aztreonam (ATM) and avibactam (AVI) in combination (ATM/AVI; AVI at 4 µg/mL fixed concentration) provides a similarly broad range of activity while maintaining activity against MBL-producing isolates. The in vitro susceptibility testing of ATM/AVI by standard methods was evaluated during development. This study investigated the impact of nonstandard testing conditions on the activity of ATM/AVI as observed during broth microdilution testing as well as the equivalency between agar dilution and broth microdilution MIC values when testing a diverse panel of Enterobacterales (N = 201). Nonstandard test conditions evaluated included inoculum density, atmosphere of incubation, media pH, varied medium cation concentrations, incubation time, varied serum concentrations, testing in pooled urine instead of media, addition of blood to the media, and the presence of surfactant. Generally, apart from low pH and high inoculum density, nonstandard testing parameters did not affect ATM/AVI broth microdilution MIC values. Correlation of MIC values obtained by agar dilution and broth microdilution resulted in an essential agreement of 97.0% for all tested Enterobacterales. Variation of standard testing conditions had little impact on broth microdilution MIC values for ATM/AVI. The correlation between broth microdilution and agar dilution MICs suggests both methods are reliable for determination of ATM/AVI MIC values. IMPORTANCE Increasing antibiotic resistance and emergence of pan-resistant isolates threaten the ability to control infections and to provide many other medical interventions such as surgery and chemotherapy, among others. New therapies are required to control emerging resistance mechanisms, including the increase in metallo-ß-lactamases. Some new antibiotic combinations provide coverage against highly resistant isolates but are unable to target organisms that produce metallo-ß-lactamases. Aztreonam in combination with avibactam provides a broad spectrum of activity against highly resistant isolates that also targets metallo-ß-lactamase-producing organisms. An important part of drug development is the ability for clinical labs to determine the susceptibility of isolates to the antimicrobial. This manuscript investigates the in vitro susceptibility testing of aztreonam/avibactam with nonstandard testing conditions and a correlation study between broth microdilution and agar dilution against clinical isolates encoding a variety of resistance mechanisms. Overall, aztreonam/avibactam was generally unaffected by changes in testing conditions and showed strong agar/broth correlation.


Assuntos
Aztreonam , Gammaproteobacteria , Aztreonam/farmacologia , Ágar , Enterobacteriaceae , Antibacterianos/farmacologia , beta-Lactamases , Testes de Sensibilidade Microbiana
4.
Microb Drug Resist ; 28(8): 877-881, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35763306

RESUMO

We investigated the in vitro susceptibility of ceftazidime-avibactam (CZA) resistant Stenotrophomonas maltophilia to the associations aztreonam/amoxicillin-clavulanate (ATM-AMC) and ATM-CZA. Forty clinical isolates of S. maltophilia recovered from sputum samples of 40 cystic fibrosis people were selected from the collection of the Nantes University Hospital, based on their resistance to CZA. Minimum inhibitory concentrations (MICs) of ATM-CZA and ATM-AMC were determined for each isolate by an Etest strip superposition method, and by Etest for each individual antibiotic. MICs of CZA, ATM, and AMC ranged from 12 to ≥256, ≥256, and 16 to ≥256 mg/L, respectively. Synergistic effects were observed with the ATM-CZA combination for all isolates (fractional inhibitory concentration index range of 0.01 to 0.27), with combination MICs ranging from 0.75 to 16 mg/L (MIC50/90 = 3/12 mg/L), corresponding to a decrease of at least 16-folds in the MIC of ATM. In 23 (57.5%) S. maltophilia isolates, the association of AMC to ATM was also synergistic and combination MICs were ≤16 mg/L (EUCAST breakpoint for ATM resistance in Pseudomonas aeruginosa). Our results show that ATM-CZA or ATM-AMC could be alternative therapeutic options against some highly resistant S. maltophilia. This encourages further experimental studies, in particular time-kill analyses, and clinical trials to delineate conditions required for use of these combinations in practice.


Assuntos
Aztreonam , Stenotrophomonas maltophilia , Amoxicilina/farmacologia , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Aztreonam/farmacologia , Ceftazidima/farmacologia , Combinação de Medicamentos , Humanos , Testes de Sensibilidade Microbiana
5.
Microb Drug Resist ; 28(5): 545-550, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35512733

RESUMO

Burkholderia cepacia complex (Bcc) in airways of patients with cystic fibrosis (CF) is associated with an increased morbidity and mortality. A huge range of intrinsic antimicrobial resistances challenges the treatment of Bcc infections. The aim was to assess the susceptibility of Bcc to ceftazidime/avibactam and standard drugs for the treatment for CF patients and to determine the respective genomic determinants of resistance. Bcc isolates (n = 64) from a prospective multicenter study of CF airway pathogens (2004-2020, Germany) were subjected to broth microdilution and minimal inhibitory concentrations were interpreted with European Committee on Antimicrobial Susceptibility Testing and Clinical & Laboratory Standards Institute breakpoints. A synergism between aztreonam and avibactam was tested using ceftazidime/avibactam disks with or without aztreonam. Plasmids and chromosomes of all isolates were screened for antimicrobial resistance genes. The highest susceptibility rate was detected for trimethoprim/sulfamethoxazole (83%), followed by ceftazidime/avibactam (78%), ceftazidime (53%), levofloxacin (39%) and meropenem (27%). The median inhibition zone diameters of ceftazidime-avibactam and ceftazidime/avibactam plus aztreonam were equal. This was in line with the absence of known class B metallo-ß-lactamases in any of the isolates. The majority of isolates carried blapenA (98%) and blaampC (86%). Trimethoprim/sulfamethoxazole and ceftazidime/avibactam showed high susceptibility rates. Aztreonam in combination with ceftazidime/avibactam had no synergistic effect in our Bcc isolates.


Assuntos
Complexo Burkholderia cepacia , Fibrose Cística , Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/uso terapêutico , Aztreonam/farmacologia , Aztreonam/uso terapêutico , Ceftazidima/farmacologia , Ceftazidima/uso terapêutico , Fibrose Cística/tratamento farmacológico , Combinação de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Estudos Prospectivos , Sulfametoxazol/farmacologia , Trimetoprima/farmacologia
6.
Lett Appl Microbiol ; 75(3): 578-587, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34687564

RESUMO

Broth microdilution assays were used to determine minimum inhibitory concentrations (MICs) and fractional inhibitory concentration indices (FICIs) of tea tree oil (TTO), tobramycin, colistin and aztreonam (ATM) against clinical cystic fibrosis-associated Pseudomonas aeruginosa (CFPA) isolates (n = 20). The minimum biofilm eradication concentration (MBEC) and fractional biofilm eradication concentration index (FBECI) were also determined using a similar microbroth dilution checkerboard assay, with biofilms formed using the MBEC device® . TTO was effective at lower concentrations against multidrug-resistant (MDR) CFPA isolates (n = 3) in a biofilm compared to in a planktonic state (MBEC 18·7-fold lower than MIC). CFPA within biofilm was less susceptible to ATM, colistin and tobramycin compared to planktonic cells (MBEC 6·3-fold, 9·3-fold, and 2·1-fold higher than MIC respectively). All combinations of essential oil and antibiotic showed indifferent relationships (FICI 0·52-1·72) when tested against planktonic MDR CFPA isolates (n = 5). Against CFPA isolates (n = 3) in biofilm, combinations of TTO/aztreonam and TTO/colistin showed indifferent relationships (mean FBECI 0·85 and 0·60 respectively), whereas TTO/tobramycin showed a synergistic relationship (mean FBECI 0·42). The antibiofilm properties of TTO and the synergistic relationship seen between TTO and tobramycin against CFPA in vitro make inhaled TTO a promising candidate as a potential therapeutic agent.


Assuntos
Fibrose Cística , Melaleuca , Óleos Voláteis , Óleo de Melaleuca , Antibacterianos/farmacologia , Aztreonam/farmacologia , Biofilmes , Colistina/farmacologia , Testes de Sensibilidade Microbiana , Óleos Voláteis/farmacologia , Pseudomonas aeruginosa , Chá , Óleo de Melaleuca/farmacologia , Tobramicina/farmacologia , Árvores
7.
Diagn Microbiol Infect Dis ; 100(2): 115343, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33652305

RESUMO

Minimal inhibitory concentrations (MICs) of ticarcillin/clavulanic acid (TLc), ceftolozane/tazobactam (C/T), and aztreonam (AT) were determined for 6 SPM-1-producing Pseudomonas aeruginosa (PSA) using Etest® strips and the synergistic effect of such antimicrobials against was evaluated by gradient diffusion strip crossing (GDSC) test. The fraction inhibitory concentration indexes (FICI) were calculated and showed a synergistic (n = 3) and additive (n = 2) effects of TLc + AT against SPM-1 producers, while TLc + C/T combination caused no effect. Average MIC reduction of TLc and AT by GDSC was 3-fold and 2-fold dilutions, respectively. Thus, TLc + AT might be a candidate as a combination therapy to treat SPM-1-producing PSA infections.


Assuntos
Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , beta-Lactamases/metabolismo , Aztreonam/administração & dosagem , Aztreonam/farmacologia , Cefalosporinas/farmacologia , Ácidos Clavulânicos/administração & dosagem , Ácidos Clavulânicos/farmacologia , Sinergismo Farmacológico , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Tazobactam/farmacologia , Ticarcilina/administração & dosagem , Ticarcilina/farmacologia , beta-Lactamases/genética
8.
Clin EEG Neurosci ; 52(1): 66-68, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32401538

RESUMO

Generalized periodic discharges with triphasic morphology (GPDs + TWm) have been reported with multiple metabolic and drug toxicities. Beta-lactam antibiotics in some cases can cause neurotoxicity with GPDs + TWm on EEG. There are no reports in the literature of aztreonam causing neurotoxicity and GPDs + TWm. Here we describe GPDs + TWm and encephalopathy developing in a patient with underlying dementia and acute kidney injury who was started on aztreonam for cystitis. Neurotoxic effects of beta-lactam antibiotics have been well studied at this point, likely related to GABA receptor antagonism by the beta lactam ring. Risk factors for toxicity include, advanced age, prior neurological injury and decreased renal clearance. This patient carried multiple risk factors for beta-lactam neurotoxicity. Discontinuation of aztreonam led to a resolution of GPDs + TWm on EEG, and regression of encephalopathy.


Assuntos
Aztreonam/efeitos adversos , Ondas Encefálicas/efeitos dos fármacos , Eletroencefalografia/efeitos dos fármacos , Convulsões/fisiopatologia , Idoso , Aztreonam/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/fisiopatologia , Ondas Encefálicas/fisiologia , Eletroencefalografia/métodos , Feminino , Humanos , Alta do Paciente , Convulsões/diagnóstico
9.
J Antimicrob Chemother ; 75(7): 1874-1878, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32240299

RESUMO

OBJECTIVES: Carbapenem-resistant Pseudomonas aeruginosa (CR-PSA) imposes great limitations on empirical therapeutic choices, which are further complicated by metallo-ß-lactamase production. This study evaluated in vitro antimicrobial synergy of ceftolozane/tazobactam in combination with aztreonam and fosfomycin against MDR PSA. METHODS: MICs were determined by broth microdilution and gradient strips. The effect of ceftolozane/tazobactam+aztreonam and ceftolozane/tazobactam+fosfomycin combinations were tested against 27 MDR PSA isolates carrying blaSPM-1 (n = 13), blaIMP (n = 4), blaVIM (n = 3), blaGES-1 (n = 2) and blaCTX-M-like (n = 2), and 3 isolates with no acquired ß-lactamase production detected by gradient diffusion strip crossing (GDSC). Six genetically unrelated SPM-1-producing isolates were also evaluated by time-kill analysis (TKA). RESULTS: All CR-PSA isolates harbouring blaSPM-1, blaGES-1 and blaIMP-1 were categorized as resistant to ceftolozane/tazobactam, meropenem and fosfomycin, with 70% being susceptible to aztreonam. Synergism for ceftolozane/tazobactam+fosfomycin and ceftolozane/tazobactam+aztreonam combinations was observed for 88.9% (24/27) and 18.5% (5/27) of the isolates by GDSC, respectively. A 3- to 9-fold reduction in ceftolozane/tazobactam MICs was observed, depending on the combination. Ceftolozane/tazobactam+fosfomycin was synergistic by TKA against one of six SPM-1-producing isolates, with additional non-synergistic bacterial density reduction for another isolate. Aztreonam peak concentrations alone demonstrated a ≥3 log10 cfu/mL reduction against all six isolates, but all strains were within the susceptible range for the drug. No antagonism was observed. CONCLUSIONS: In the context of increasing CR-PSA and the genetic diversity of resistance mechanisms, new combinations and stewardship strategies may need to be explored in the face of increasingly difficult to treat pathogens.


Assuntos
Fosfomicina , Infecções por Pseudomonas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Aztreonam/farmacologia , Cefalosporinas/farmacologia , Fosfomicina/farmacologia , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Pseudomonas aeruginosa , Tazobactam/farmacologia
10.
PLoS Comput Biol ; 15(12): e1007562, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31860667

RESUMO

Pseudomonas aeruginosa, a main cause of human infection, can gain resistance to the antibiotic aztreonam through a mutation in NalD, a transcriptional repressor of cellular efflux. Here we combine computational analysis of clinical isolates, transcriptomics, metabolic modeling and experimental validation to find a strong association between NalD mutations and resistance to aztreonam-as well as resistance to other antibiotics-across P. aeruginosa isolated from different patients. A detailed analysis of one patient's timeline shows how this mutation can emerge in vivo and drive rapid evolution of resistance while the patient received cancer treatment, a bone marrow transplantation, and antibiotics up to the point of causing the patient's death. Transcriptomics analysis confirmed the primary mechanism of NalD action-a loss-of-function mutation that caused constitutive overexpression of the MexAB-OprM efflux system-which lead to aztreonam resistance but, surprisingly, had no fitness cost in the absence of the antibiotic. We constrained a genome-scale metabolic model using the transcriptomics data to investigate changes beyond the primary mechanism of resistance, including adaptations in major metabolic pathways and membrane transport concurrent with aztreonam resistance, which may explain the lack of a fitness cost. We propose that metabolic adaptations may allow resistance mutations to endure in the absence of antibiotics and could be targeted by future therapies against antibiotic resistant pathogens.


Assuntos
Farmacorresistência Bacteriana/genética , Mutação com Perda de Função , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Antibacterianos/farmacologia , Aztreonam/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biologia Computacional , Perfilação da Expressão Gênica , Genes Bacterianos , Humanos , Redes e Vias Metabólicas , Modelos Biológicos , Modelos Moleculares , Filogenia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Análise de Sistemas
11.
PLoS One ; 14(9): e0221673, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31498805

RESUMO

Comparing the efficacy of inhaled antibiotics can be difficult in small groups of patients with cystic fibrosis and mild lung disease. In a feasibility study we compared Aztreonam lysine for inhalation solution (AZLI; Cayston®) to standard inhaled antibiotic therapy in patients with cystic fibrosis and near normal spirometry. To detect treatment responses we used both lung clearance index (LCI) and forced expiratory volume in one second (FEV1). At baseline, median FEV1 was 87% pred. and median LCI was 8.6 (upper limit of normal: 7.0). After 4 weeks, LCI improved by -0.36 after AZLI and deteriorated by +0.12 after tobramycin treatment (p = 0.039). No significant differences between treatments (p = 0.195) were observed using FEV1. These results suggest that lung clearance index can be used to detect treatment induced changes in subjects with mild lung disease.


Assuntos
Aztreonam/administração & dosagem , Aztreonam/farmacologia , Fibrose Cística/tratamento farmacológico , Fibrose Cística/fisiopatologia , Pulmão/efeitos dos fármacos , Pulmão/fisiopatologia , Espirometria , Administração por Inalação , Adolescente , Adulto , Aztreonam/uso terapêutico , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Recuperação de Função Fisiológica/efeitos dos fármacos , Resultado do Tratamento , Adulto Jovem
12.
J Med Microbiol ; 68(10): 1552-1559, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31419210

RESUMO

Introductio n. Pseudomonas aeruginosa is an important Gram-negative pathogen that is intrinsically multidrug-resistant (MDR) and frequently associated with healthcare-associated outbreaks. With increasing resistance to antibiotics and with very few novel drugs under development, clinicians often use combinations to treat critically ill patients.Aim. The aim of this study was to evaluate the ability of epigallocatechin (EGCG) to restore the activity of aztreonam against clinical MDR strains of P. aeruginosa.Methodology. Checkerboard and time-kill kinetic assays were performed to assess synergy in vitro and the Galleria mellonella model of infection was used to test the efficacy of the combination in vivo. Accumulation assays were performed to gain insight into the mechanism of action.Results. The results demonstrate that synergy between aztreonam and EGCG exists [fractional inhibitory concentration indices (FICIs) 0.02-0.5], with the combination affording significantly (P=<0.05) enhanced bacterial killing, with a >3 log10 reduction in colony-forming units ml-1 at 24 h. EGCG was able to restore susceptibility to aztreonam to a level equal to or below the breakpoint set by the European Committee for Antimicrobial Susceptibility Testing. In G. mellonella, the combination was superior to monotherapy, with increased larval survival observed (94 % vs ≤63 %). We also demonstrated the relatively low toxicity of EGCG to human keratinocytes and G. mellonella larvae. Accumulation assay data suggest that the mechanism of synergy may be due to EGCG increasing the uptake of aztreonam.Conclusion. EGCG was able to restore the activity of aztreonam against MDR P. aeruginosa. The data presented support further evaluation of the aztreonam-EGCG combination and highlight its potential for use in clinical medicine.


Assuntos
Antibacterianos/farmacologia , Aztreonam/farmacologia , Catequina/análogos & derivados , Polifenóis/farmacologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Catequina/farmacologia , Farmacorresistência Bacteriana Múltipla , Sinergismo Farmacológico , Humanos , Larva/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Mariposas/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento
13.
Cell Rep ; 25(9): 2390-2400.e3, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30485808

RESUMO

Streptococcus pneumoniae can acquire antibiotic resistance by activation of competence and subsequent DNA uptake. Here, we demonstrate that aztreonam (ATM) and clavulanic acid (CLA) promote competence. We show that both compounds induce cell chain formation by targeting the d,d-carboxypeptidase PBP3. In support of the hypothesis that chain formation promotes competence, we demonstrate that an autolysin mutant (ΔlytB) is hypercompetent. Since competence is initiated by the binding of a small extracellular peptide (CSP) to a membrane-anchored receptor (ComD), we wondered whether chain formation alters CSP diffusion kinetics. Indeed, ATM or CLA presence affects competence synchronization by shifting from global to local quorum sensing, as CSP is primarily retained to chained cells, rather than shared in a common pool. Importantly, autocrine-like signaling prolongs the time window in which the population is able to take up DNA. Together, these insights demonstrate the versatility of quorum sensing and highlight the importance of an accurate antibiotic prescription.


Assuntos
Antibacterianos/farmacologia , Comunicação Autócrina , Percepção de Quorum/efeitos dos fármacos , Transdução de Sinais , Streptococcus pneumoniae/fisiologia , Comunicação Autócrina/efeitos dos fármacos , Aztreonam/farmacologia , Proteínas de Bactérias/metabolismo , Ácido Clavulânico/farmacologia , Dosagem de Genes , Transferência Genética Horizontal/genética , Modelos Biológicos , Peptídeos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Streptococcus pneumoniae/efeitos dos fármacos
14.
Protein Pept Lett ; 25(12): 1155-1162, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30381056

RESUMO

BACKGROUND: The massive use of antibiotics has led to the selection of resistant bacterial strains that are difficult to eradicate. Among these, Pseudomonas aeruginosa most frequently colonizes and infects the airways of cystic fibrosis patients. Cationic Antimicrobial Peptides (AMPs) represent interesting molecules for the development of new antimicrobial agents. Thanks to their mechanism of action that involves the permeabilization of the bacterial cytoplasmic membrane, the induction of resistance is quite limited. OBJECTIVE: The evaluation of the capability of two frog-skin derived AMPs, i.e. Esc(1-21) and its diastereomer Esc(1-21)-1c, to induce resistance in P. aeruginosa and synergize with aztreonam. METHOD: The induction of resistance was evaluated after 15 cycles of exposure to non-inhibitory growth concentrations of antibiotics and peptides. Subsequently, the Minimal Inhibitory Concentration (MIC) was calculated and compared to that obtained before drug exposure. Furthermore, MICs of AMPs and antibiotics were evaluated in Artificial Sputum Medium (ASM). Finally, the ability of the two peptides to synergize with aztreonam was determined by the checkerboard titration method. RESULTS: Pseudomonas aeruginosa acquired resistance to antibiotics, as evidenced by the increased MICs compared to the initial ones (from 8 to 128-fold higher), while no change in MICs was observed after multiple treatments with the Esc-peptides. In addition, both peptides showed significantly lower MICs than aztreonam in ASM. Finally, the diastereomer Esc(1-21)-1c had the ability to synergize with aztreonam in inhibiting growth and in killing Pseudomonas cells. CONCLUSION: Both peptides represent promising candidates for the development of new antipseudomonal compounds, which do not induce resistance.


Assuntos
Proteínas de Anfíbios/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Aztreonam/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Peptídeos Catiônicos Antimicrobianos/química , Fibrose Cística/microbiologia , Farmacorresistência Bacteriana , Sinergismo Farmacológico , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/microbiologia
16.
mBio ; 8(5)2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29089424

RESUMO

While much attention has been focused on acquired antibiotic resistance genes, chromosomal mutations may be most important in chronic infections where isolated, persistently infecting lineages experience repeated antibiotic exposure. Here, we used experimental evolution and whole-genome sequencing to investigate chromosomally encoded mutations causing aztreonam resistance in Pseudomonas aeruginosa and characterized the secondary consequences of resistance development. We identified 19 recurrently mutated genes associated with aztreonam resistance. The most frequently observed mutations affected negative transcriptional regulators of the mexAB-oprM efflux system and the target of aztreonam, ftsI While individual mutations conferred modest resistance gains, high-level resistance (1,024 µg/ml) was achieved through the accumulation of multiple variants. Despite being largely stable when strains were passaged in the absence of antibiotics, aztreonam resistance was associated with decreased in vitro growth rates, indicating an associated fitness cost. In some instances, evolved aztreonam-resistant strains exhibited increased resistance to structurally unrelated antipseudomonal antibiotics. Surprisingly, strains carrying evolved mutations which affected negative regulators of mexAB-oprM (mexR and nalD) demonstrated enhanced virulence in a murine pneumonia infection model. Mutations in these genes, and other genes that we associated with aztreonam resistance, were common in P. aeruginosa isolates from chronically infected patients with cystic fibrosis. These findings illuminate mechanisms of P. aeruginosa aztreonam resistance and raise the possibility that antibiotic treatment could inadvertently select for hypervirulence phenotypes.IMPORTANCE Inhaled aztreonam is a relatively new antibiotic which is being increasingly used to treat cystic fibrosis patients with Pseudomonas aeruginosa airway infections. As for all antimicrobial agents, bacteria can evolve resistance that decreases the effectiveness of the drug; however, the mechanisms and consequences of aztreonam resistance are incompletely understood. Here, using experimental evolution, we have cataloged spontaneous mutations conferring aztreonam resistance and have explored their effects. We found that a diverse collection of genes contributes to aztreonam resistance, each with a small but cumulative effect. Surprisingly, we found that selection for aztreonam resistance mutations could confer increased resistance to other antibiotics and promote hypervirulence in a mouse infection model. Our study reveals inherent mechanisms of aztreonam resistance and indicates that aztreonam exposure can have unintended secondary effects.


Assuntos
Antibacterianos/farmacologia , Aztreonam/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Evolução Molecular , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/patogenicidade , Animais , Cromossomos Bacterianos/genética , Doença Crônica , Fibrose Cística/complicações , Fibrose Cística/microbiologia , Evolução Molecular Direcionada/métodos , Modelos Animais de Doenças , Aptidão Genética , Humanos , Proteínas de Membrana Transportadoras , Camundongos , Testes de Sensibilidade Microbiana , Mutação , Fenótipo , Pneumonia/microbiologia , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Sequenciamento Completo do Genoma
17.
Artigo em Inglês | MEDLINE | ID: mdl-28584146

RESUMO

Antibiotics excreted into the intestinal tract may disrupt the microbiota that provide colonization resistance against enteric pathogens and alter normal metabolic functions of the microbiota. Many of the bacterial metabolites produced in the intestinal tract are absorbed systemically and excreted in urine. Here, we used a mouse model to test the hypothesis that alterations in levels of targeted bacterial metabolites in urine specimens could provide useful biomarkers indicating disrupted or intact colonization resistance. To assess in vivo colonization resistance, mice were challenged with Clostridium difficile spores orally 3, 6, and 11 days after the completion of 2 days of treatment with piperacillin-tazobactam, aztreonam, or saline. For concurrent groups of antibiotic-treated mice, urine samples were analyzed by using liquid chromatography-tandem mass spectrometry (LC-MS/MS) to quantify the concentrations of 11 compounds targeted as potential biomarkers of colonization resistance. Aztreonam did not affect colonization resistance, whereas piperacillin-tazobactam disrupted colonization resistance 3 days after piperacillin-tazobactam treatment, with complete recovery by 11 days after treatment. Three of the 11 compounds exhibited a statistically significant and >10-fold increase (the tryptophan metabolite N-acetyltryptophan) or decrease (the plant polyphenyl derivatives cinnamoylglycine and enterodiol) in concentrations in urine 3 days after piperacillin-tazobactam treatment, followed by recovery to baseline that coincided with the restoration of in vivo colonization resistance. These urinary metabolites could provide useful and easily accessible biomarkers indicating intact or disrupted colonization resistance during and after antibiotic treatment.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Glicina/análogos & derivados , Intestinos/microbiologia , Lignanas/urina , Triptofano/análogos & derivados , Animais , Antibacterianos/farmacologia , Aztreonam/metabolismo , Aztreonam/farmacologia , Biomarcadores/urina , Cromatografia Líquida , Clostridioides difficile/efeitos dos fármacos , Farmacorresistência Bacteriana/fisiologia , Glicina/urina , Intestinos/efeitos dos fármacos , Metaboloma/efeitos dos fármacos , Metabolômica , Camundongos , Ácido Penicilânico/análogos & derivados , Ácido Penicilânico/metabolismo , Ácido Penicilânico/farmacologia , Piperacilina/metabolismo , Piperacilina/farmacologia , Combinação Piperacilina e Tazobactam , Espectrometria de Massas em Tandem , Triptofano/urina
18.
Microbiome ; 5(1): 51, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28476135

RESUMO

BACKGROUND: Aztreonam lysine for inhalation (AZLI) is an inhaled antibiotic used to treat chronic Pseudomonas aeruginosa infection in CF. AZLI improves lung function and quality of life, and reduces exacerbations-improvements attributed to its antipseudomonal activity. Given the extremely high aztreonam concentrations achieved in the lower airways by nebulization, we speculate this may extend its spectrum of activity to other organisms. As such, we sought to determine if AZLI affects the CF lung microbiome and whether community constituents can be used to predict treatment responsiveness. METHODS: Patients were included if they had chronic P. aeruginosa infection and repeated sputum samples collected before and after AZLI. Sputum DNA was extracted, and the V3-hypervariable region of the 16S ribosomal RNA (rRNA) gene amplified and sequenced. RESULTS: Twenty-four patients naïve to AZLI contributed 162 samples. The cohort had a median age of 37.1 years, and a  median FEV1 of 44% predicted. Fourteen patients were a priori defined as responders for achieving ≥3% FEV1 improvement following initiation. No significant changes in alpha diversity were noted following AZLI. Furthermore, beta diversity demonstrated clustering with respect to patients, but had no association with AZLI use. However, we did observe a decline in the relative abundance of several individual operational taxonomic units (OTUs) following AZLI initiation suggesting that specific sub-populations of organisms may be impacted. Patients with higher abundance of Staphylococcus and anaerobic organisms including Prevotella and Fusobacterium were less likely to respond to therapy. CONCLUSIONS: Results from our study suggest potential alternate/additional mechanisms by which AZLI functions. Moreover, our study suggests that the CF microbiota may be used as a biomarker to predict patient responsiveness to therapy suggesting the microbiome may be harnessed for the personalization of therapies.


Assuntos
Antibacterianos/administração & dosagem , Aztreonam/administração & dosagem , Fibrose Cística/tratamento farmacológico , Pulmão/microbiologia , Microbiota/efeitos dos fármacos , Infecções por Pseudomonas/tratamento farmacológico , Administração por Inalação , Adulto , Antibacterianos/farmacologia , Aztreonam/farmacologia , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Fibrose Cística/microbiologia , DNA Bacteriano/genética , DNA Ribossômico/genética , Humanos , Pulmão/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Pseudomonas aeruginosa/efeitos dos fármacos , Qualidade de Vida , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Resultado do Tratamento
19.
J Bone Joint Surg Am ; 99(3): 223-231, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28145953

RESUMO

BACKGROUND: The aim of this study was to determine the optimal formulation of antibiotic-loaded bone cement for knee periprosthetic joint infection. We used both in vitro and in vivo models incorporating various broad-spectrum antibiotics and tested their efficacy against gram-positive and gram-negative bacteria. METHODS: Bone cement specimens loaded with 4 g of either vancomycin or teicoplanin and 4 g of ceftazidime, imipenem, or aztreonam were studied to measure their in vitro antibiotic release characteristics and antibacterial capacities against methicillin-susceptible Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Escherichia coli. Bone cement spacers loaded with the antibiotics with the superior in vitro antibacterial capacity were then implanted into 8 patients (4 women and 4 men between 51 and 79 years of age) diagnosed with chronic knee periprosthetic joint infection. The antibiotic concentrations and antibacterial activities in the joint fluid at the site of the infection were measured following spacer implantation. RESULTS: Cement samples loaded with vancomycin and ceftazidime exhibited in vitro antibacterial activity against the test microorganisms that lasted for as long as or longer than that of cement loaded with the other antibiotic combinations. Joint fluid samples exhibited activity against bacteria including American Type Culture Collection (ATCC) strains and clinically isolated strains. CONCLUSIONS: Bone cement loaded with vancomycin and ceftazidime provided broad-spectrum antibacterial capacity both in vitro and in vivo and was shown to be a potentially effective therapeutic measure in the treatment of knee periprosthetic joint infections. CLINICAL RELEVANCE: This study confirmed the potential effectiveness of drug delivery from bone cement spacers impregnated with vancomycin and ceftazidime.


Assuntos
Antibacterianos/farmacologia , Cimentos Ósseos/farmacologia , Ceftazidima/farmacologia , Prótese do Joelho , Infecções Relacionadas à Prótese/tratamento farmacológico , Infecções Relacionadas à Prótese/microbiologia , Vancomicina/farmacologia , Idoso , Aztreonam/farmacologia , Doença Crônica , Feminino , Humanos , Imipenem/farmacologia , Masculino , Pessoa de Meia-Idade , Teicoplanina/farmacologia , Resultado do Tratamento
20.
Artigo em Inglês | MEDLINE | ID: mdl-27795378

RESUMO

The monobactam antibiotic aztreonam is used to treat cystic fibrosis patients with chronic pulmonary infections colonized by Pseudomonas aeruginosa strains expressing CTX-M extended-spectrum ß-lactamases. The protonation states of active-site residues that are responsible for hydrolysis have been determined previously for the apo form of a CTX-M ß-lactamase but not for a monobactam acyl-enzyme intermediate. Here we used neutron and high-resolution X-ray crystallography to probe the mechanism by which CTX-M extended-spectrum ß-lactamases hydrolyze monobactam antibiotics. In these first reported structures of a class A ß-lactamase in an acyl-enzyme complex with aztreonam, we directly observed most of the hydrogen atoms (as deuterium) within the active site. Although Lys 234 is fully protonated in the acyl intermediate, we found that Lys 73 is neutral. These findings are consistent with Lys 73 being able to serve as a general base during the acylation part of the catalytic mechanism, as previously proposed.


Assuntos
Antibacterianos/farmacologia , Aztreonam/farmacologia , Monobactamas/farmacologia , beta-Lactamases/metabolismo , Antibacterianos/química , Aztreonam/química , Domínio Catalítico , Cristalografia por Raios X , Testes de Sensibilidade Microbiana , Monobactamas/química , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/enzimologia , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA